首页  产品信息 其他专业应用 3D相机 | 3D成像设备 人工智能机器视觉识别软件

3D相机 | 3D成像设备

SICK 3D相机(3D线激光轮廓传感器)ZIVID全彩结构光3D相机 人工智能深度相机 AI-3D人工智能机器视觉识别软件3D相机模组-可定制开发3D机器视觉在汽车锂电池行业的整体解决方案3D机器视觉在轨道交通行业的整体解决方案基于深度学习和3D相机的无序抓取解决方案冲压应变分析仪AutoGrid®comsmart三维人体扫描仪GOM ATOS Q 三维扫描仪GOM Scan1小型三维扫描仪高性价比光场相机Raytrix科研级3D光场相机 显示全部
dow.png

人工智能机器视觉识别软件

  • 人工智能机器视觉识别软件
人工智能助力机器视觉,效率高,可塑性强,普适性强,应用范围广。

所属类别:其他专业应用 » 3D相机 | 3D成像设备

所属品牌:

产品负责人:

姓名:李工(Mark)

电话:185 1643 1530(微信同号)

邮箱:tiemin-li@auniontech.com

运用深度学习让机器仿如人脑一样能自我学习,可轻易的辨识传统光学检测(AOI)难以检测的不规律瑕疵及特征,如脏污、刮痕、裂缝、毛边等等。亦可用来实时又正确地将物件分类及分级,及引导机器人自动找寻正确工作路径。无论是「监督式学习」或较先进的「非监督式学习」,使用者仅需提供少量样本自我学习,即能省去耗时并需客制化的软件编写,大幅降低导入机器视觉的门坎。除了辨识外,已与知名品牌机器人串联,当软件辨识完毕,其后续所需的取放动作,均能透过机器人轻松自如地完成任务,充份达成产线完全自动化的完美境界。


人工智能机器视觉与传统视觉的比较


高效率:

例如用传统算法去评估一个棋局的优劣,可能需要专业的棋手花大量的时间去研究影响棋局的每一个因素,而且还不一定准确。而利用深度学习技术只要设计好网络框架,就不需要考虑繁琐的特征提取的过程。这也是 DeepMind公司的AlphaGo 能够强大到轻松击败专业的人类棋手的原因,它节省了大量的特征提取的时间,使得本来不可行的事情变为可行。


可塑性:

在利用传统算法去解决一个问题时,调整模型的代价可能是把代码重新写一遍,这使得改进的成本巨大。深度学习只需要调整参数,就能改变模型。这使得它具有很强的灵活性和成长性,一个程序可以持续改进,然后达到接近完美的程度。


普适性:

神经网络是通过学习来解决问题,可以根据问题自动建立模型,所以能够适用于各种问题,而不是局限于某个固定的问题。


应用领域


                                                   字体识别                                                             瑕疵检测


物件对比&升级


                                                快速物件分类                                               特征点辨识和定位


应用案例


多暇疵检测:iphone充电头测试,相机1只,优点:多瑕疵检测


PCB板检测:相机1只,优点:用Golden Sample教导系统,让系统自行找出与Golden Sample不同的PCB板,不需要制造协暇来让系统学习。



数量检测:相机:1只(Fov内都可以算出数量) 优点:使用深度学习的方式来做,可提高辨视率,即使产品靠的很紧都可以正确辨视

隐形眼镜瑕疵检测

询问表格

* 号为必填内容
  • *
  • *
  • *
  • *
  • PC
    移动
    Pad

产品标签:机器视觉,2D机器视觉,深度学习, 瑕疵检测, 装备验证, 机器人引导, 表面检测,字符识别